If it's not what You are looking for type in the equation solver your own equation and let us solve it.
49x^2+8=17
We move all terms to the left:
49x^2+8-(17)=0
We add all the numbers together, and all the variables
49x^2-9=0
a = 49; b = 0; c = -9;
Δ = b2-4ac
Δ = 02-4·49·(-9)
Δ = 1764
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1764}=42$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-42}{2*49}=\frac{-42}{98} =-3/7 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+42}{2*49}=\frac{42}{98} =3/7 $
| 7m^2+48m+30=7m | | 7(v-4)=(3+v)-1 | | 2/5x-12/7=x | | 87-y=226 | | 7^x=7 | | 2/5x-12/7=7x+1/2 | | 4=z-11 | | 6x+2+3x-4=8+2x-6 | | 0.43(28x−35)=1.33(9x−15) | | -4=z11 | | 5^(2x)=17 | | 9x+7x+7=12+7x | | 7(8-4x)=84 | | 5p*3=9.50 | | 5+4b=6 | | 6x+60=3.50x+100 | | 2x-5(x-4)=-8+3x+4 | | x^2+2x+2=9 | | x(5x)=50 | | 5(7x-5)(4x+3)=0 | | -16=5=7x | | 4p^2+13p=35 | | 7-2=n | | -9+12x-6x2=0 | | 9+2u=15 | | 200=5·2^x | | -18+3m=10 | | 200=5·2^n | | 4x+5.98=79.94 | | 0=x^2-160x+1500 | | 6x3.141+5x3.141=3.141 | | (x-17.7)=8.2 |